Mechanism of TRPA1 and TRPV4 Participating in Mechanical Hyperalgesia of Rat Experimental Knee Osteoarthritis
نویسندگان
چکیده
©2017 Turkish League Against Rheumatism. All rights reserved. ABSTRACT Objectives: This study aims to observe both transient receptor potential ankyrin 1 (TRPA1) and transient receptor potential vanilloid 4 (TRPV4) expressions in synovial tissues of rats with mechanical hyperalgesia induced by experimental knee osteoarthritis (KOA). Patients and methods: Forty-five four-month-old Sprague Dawley male rats, weight ranging from 440 g to 470 g, were randomly allocated into three groups, namely KOA group, KOA-antagonist group, and normal group. Mechanical withdrawal thresholds of five rats from each group were detected one week before modeling, and two, four, six, and eight weeks after modeling, respectively. Synovial and cartilage tissues from diseased knee were collected after sacrificing the rats eight weeks after modeling so to observe pathological morphology at cartilage tissues and to determine protein and gene expressions of TRPA1 and TRPV4 at synovial tissues. Results: Rats with KOA showed obvious mechanical hyperalgesia from two weeks after modeling to the latest follow-up, eight weeks after modeling. The abnormally low level of mechanical withdrawal thresholds can be increased by TRPA1 and TRPV4 ion channel blockers. Conclusion: Up-regulating expressions of TRPA1 and TRPV4 participate in the occurrence mechanism of mechanical hyperalgesia induced by KOA.
منابع مشابه
A transient receptor potential vanilloid 4-dependent mechanism of hyperalgesia is engaged by concerted action of inflammatory mediators.
The transient receptor potential vanilloid 4 (TRPV4) is a primary afferent transducer that plays a crucial role in neuropathic hyperalgesia for osmotic and mechanical stimuli, as well as in inflammatory mediator-induced hyperalgesia for osmotic stimuli. In view of the clinical importance of mechanical hyperalgesia in inflammatory states, the present study investigated the role of TRPV4 in mecha...
متن کاملThe Effect of Mesenchymal Stem Cells and Aqueous Extract of Elaeagnus Angustifolia on the Mechanical Properties of Articular Cartilage in an Experimental Model of Rat Osteoarthritis
Introduction: Although, the effect of direct intra-articular injection of bone marrow stem cells (BMSCs) on the repair of articular cartilage and the effect of Elaeagnus angustifolia extract on pain relief in patients with osteoarthritis have been investigated, no studies has been conducted to compare the effects of these two therapeutic methods on the mechanical properties of articular cartila...
متن کاملProtease-activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice.
Exacerbated sensitivity to mechanical stimuli that are normally innocuous or mildly painful (mechanical allodynia and hyperalgesia) occurs during inflammation and underlies painful diseases. Proteases that are generated during inflammation and disease cleave protease-activated receptor 2 (PAR2) on afferent nerves to cause mechanical hyperalgesia in the skin and intestine by unknown mechanisms. ...
متن کاملTRPC1 and TRPC6 channels cooperate with TRPV4 to mediate mechanical hyperalgesia and nociceptor sensitization.
The transient receptor potential vanilloid 4 (TRPV4) contributes to mechanical hyperalgesia of diverse etiologies, presumably as part of a mechanoreceptor signaling complex (Alessandri-Haber et al., 2008). To investigate the hypothesis that a functional interaction between TRPV4 and stretch-activated ion channels (SACs) is involved in this mechanical transduction mechanism, we used a selective ...
متن کاملThermo-Sensitive TRP Channels: Novel Targets for Treating Chemotherapy-Induced Peripheral Pain
Abnormal Ca2+ channel physiology, expression levels, and hypersensitivity to heat have been implicated in several pain states following treatment with chemotherapeutic agents. As members of the Ca2+ permeable transient receptor potential (TRP), five of the channels (TRPV1-4 and TRPM2) are activated by different heat temperatures, and two of the channels (TRPA1 and TRPM8) are activated by cold t...
متن کامل